Page 1

3GPP TSG-SA WG3 Meeting #93
S3-183685
Spokane (US), 12-16 November 2018

 revision of S3-183522
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	0465
	rev
	1
	Current version:
	15.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	N32: remove redundant references to encrypted IEs

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-11-05

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	When the receiving SEPP inserts the decrypted values, using the references in the clearTextEncapsulationMessage block could lead to errors or security weaknesses. The references in the clearTextEncapsulationMessage block are not reliable as the NF sending the original message can insert references in the clearTextEncapsulationMessage block as well.
Instead, the receiving SEPP can use the the NF API data-type placement mapping to identify where the decrypted values are to be inserted. Besides the security issues with using the references in the clearTextEncapsulationMessage block, they are furthermore redundant as the information is provided by the NF API data-type placement mapping already.

	
	

	Summary of change:
	Remove references to encrypted values in the clearTextEncapsulationMessage block. Use NF API data-type placement mapping instead.

	
	

	Consequences if not approved:
	Errors or even security weakness. The NF sending the original message could interfere with the procedure on N32.

	
	

	Clauses affected:
	13.2.4.2, 13.2.4.3.1.1, 13.2.4.3.2, 13.2.4.7, 13.2.4.8

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*** BEGIN CHANGES ***
13.2.4.2
Overall Message payload structure for message reformatting at SEPP

A HTTP message received from an internal Network Function is reformatted into two temporary JSON objects that will be intput to JWE:

a. The dataToIntegrityProtect containing information that is only integrity protected. It contains the following:

-
clearTextEncapsulationMessage – contains the complete original HTTP message, excluding parts which require encryption and, including the pseudo-header fields, HTTP headers and HTTP message body.
-
metadata – contains SEPP generated information i.e. authorizedIPX ID, Message ID and N32-f context Id.
b. The dataToIntegrityProtectAndCipher containing parts of original message that require both encryption and integrity protection.

[image: image1.emf]{���³dataToIntegrityProtect´���^������³clearTextEncapsulatedMsg´���^����������³Pseudo-Headers´���^ ����³Method´���^`� ����³Scheme´���^`���������³Authority´����`�����³Path´���^`��������������³Query&Fragment´���^`�� },����������³HTTP_Headers´���^����³Hdr1´��^`�����³Hdr2´� null },����������³Payload´���^����³IE1´�� {}, ����³IE2´�� null,����³IE3´�� {}, ����³IE4´�� {} } },������³metaData´���^���������³Message Id´���^`��³authorizedIPX Id´���^`�����������³N32-f Context Id´����� } }, ���³dataToIntProtectAndCipher´���> {´op´��´replace´�´path´��´�HTTP_Headers/Hdr2",´value´��Hdr2 }, {�´op´��´replace´��´path´��´�Payload/IE2",�´value´��IE2 }] }

Figure 13.2.4.2-1 Example of JSON representation of a reformatted HTTP message
Editors Note: Reformatting of Multipart HTTP messages (with JSON + binary payload) to be aligned with CT4 once available.
*** NEXT CHANGE ***
13.2.4.3.1.1
clearTextEncapsulatedMessage

This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a) Pseudo_Headers – the JSON object that includes all the Pseudo Headers in the message.

- For HTTP Request messages, the object contains entry each for the ":method", ":path", ":scheme" and ":authority" pseudo headers.

NOTE:
If the "path" pseudoheader contains multiple parts separated by a slash (/) or includes a query parameter (following a "?"), an array is used to represent :path, with one element per part of the path (i.e. per "directory"). This enables ciphering individual element of the path (e.g. if SUPI is passed).

- For HTTP Response messages, the object contains the ":status" pseudo header.

1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as "key" and the header value as "value".

1.c) Payload – the JSON object that includes the content of the payload of the HTTP message. Each attribute or IE in the payload shall form a single entry in the Payload JSON object. If there is any attribute value that requires encryption, the value shall be replaced by null. The SEPP shall calculate a JSON patch document, dataToIntegrityProtectAndCipher (clause 13.2.4.3.2), that replaces any nulls with the required values. This is an array of objects as per RFC 6902 [64].
*** NEXT CHANGE ***
13.2.4.3.2
dataToIntegrityProtectAndCipher

The dataToIntegrityProtectAndCipher is a JSON patch document as per RFC 6902 [64] that contains all the attribute values that require both encryption and integrity protection. Attribute values can come from any part of the original HTTP message – Pseudo_Headers, HTTP_Headers and Payload. The dataToIntegrityProtectAndCipher is an array of JSON objects. If no IEs require protection, then this shall be an array with no elements. The sending SEPP shall construct the JSON patch document so that the receiving SEPP can insert the attribute values into the clearTextEncapsulatedMessage by applying the JSON patch document.

*** NEXT CHANGE ***
13.2.4.7
Message verification by the receiving SEPP

The receiving SEPP shall decrypt the JWE ciphertext using the shared session key and the following parameters obtained from the JWE object – Initialization Vector, Additional Authenticated Data value (clearTextEncapsulatedMessage in “aad”) and JWE Authentication Tag (“tag”).

The content encryption algorithm checks the integrity and authenticity of the clearTextEncapsulatedMessage and the encrypted text by verifying the JWE Authentication Tag in the JWE object. The algorithm returns the decrypted plaintext (dataToIntegrityProtectAndCipher) only if the JWE Authentication Tag is correct.

The receiving SEPP shall apply the decrypted JSON patch, if included, to the clearTextEncapsulatedMessage. The receiving SEPP shall use the NF API data type placement mapping and the encryption policy to verify that the correct information elements have been encrypted.

The receiving SEPP shall next verify IPX provider updates by verifying JWS signatures added by the intermediaries. For modifictions by IPX provider that the receiving SEPP’s operator does not have a business relationship with, the SEPP shall verify the JWS signature, using the corresponding raw public key or certificate that is contained in the IPX provider’s security information list obtained as part of the N-32 security context setup. It then checks that the raw public key or certificate of the JWS signature IPX's Identity in the modifiedDataToIntegrity block matches to the IPX provider referred to in the "authorizedIPX Id" field added by the sending SEPP, based on the information given in the IPX provider security information list.

The receiving SEPP checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP applies the patches in the “operations” field in order, performs plausibility checks, and creates a new HTTP request according to the "patched" clearTextEncapsulatedMessage.

*** NEXT CHANGE ***
13.2.4.8
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image3.emf]cSEPPpSEPPpIPXcIPXcNFpNF1. HTTP Request2. Message rewriting and protection using JOSE3. Protected HTTPRequest4. Append cIPX modifications to the message5. Protected HTTP Requestw/IPX modification6. Append pIPX modifications to the message7. Protected HTTP Requestw/IPX modifications8. Verify integrity of clearText, encrypted textDecrypt encrypted Block Verify IPX updates in modificationsBlock and apply them.Reassemble the HTTP Request message.9. Modified HTTP Request10. HTTP Response11. Message rewriting and protection using JOSE12. Protected HTTPResponse13. Append pIPX modifications in the message14. Protected HTTP Responsew/IPX modification15. Append cIPX modifications in the message16. Protected HTTP Responsew/IPX modifications18. Modified HTTP Response17. Verify message.Reassemble the HTTP response.

Figure 13.2.4.8-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin reformating the HTTP Request message

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextEncapsulatedMessage block containing the following child JSON objects:

-
Pseudo_Headers

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For the attributes that requires e2e encryption between two SEPPs, the cSEPP shall create a JSON patch document, whose application inserts the values to the clearTextEncapsulatedMessage. The SEPP shall replace the attribute’s value in the clearTextEncapsulatedMessage by null.
A metadata block is created that contains the N32-f context Id, Message Id generated by SEPP for this request/response transaction and next hop identity.

The cSEPP protects dataToIntegrityProtect block and dataToIntegrityProtectAndCipher block as per clause 13.2.a.4. This results in a single JWE object representing the protected HTTP Request message.

b. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS becomes the payload of the new HTTP message generated by cSEPP.

3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary.

4.
The first intermediary (e.g. visited network's IPX provider) creates a new modifiedDataToIntegrityProtect JSON object with three elements:

a. The operations JSON element contains modifications performed by the first intermediary as per RFC 6902[64].

b. The intermediary includes its own identity in the Identity field of the patchRequest element.

c. The "tag" element, present in the JWE object generated by cSEPP, is copied into the modifiedDataToIntegrityProtect object. This acts as a replay protection for updates made by the first intermediary.

The intermediary executes JWS on the modifiedDataToIntegrityProtect JSON object and appends to the message.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary performs further modifications if required. The second intermediary executes JWS on the modifiedDataToIntegrityProtect JSON object and appends it to the message.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note:
The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It extracts the serialized values from the components of the JWE object.

-
Invokes JWE decrypt function to check the integrity of the message and decrypt the dataToIntegrityProtectAndCipher block. This results in entries in the encrypted block becoming visible in cleartext.

-
The pSEPP updates the clearTextEncapsulationMessage block in the message by applying the JSON patch document in the dataToIntegrityProtectAndCipher block.The receiving SEPP shall use the NF API data type placement mapping and the encryption policy to verify that the correct information elements have been encrypted, as described in clause 13.2.4.7
-
It then verifies IPX provider updates of the attributes in the modificationsArray. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextEncapsulationMessage in order.
The pSEPP re-assembles the full HTTP Request from the contents of the clearTextEncapsulationMessage.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.
*** END CHANGES ***

_1596433550.vsd
{
 “dataToIntegrityProtect” : {
 “clearTextEncapsulatedMsg” : {
 “Pseudo-Headers” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “metaData” : {
 “Message Id” : {},
	 “authorizedIPX Id” : {},
 “N32-f Context Id” : ()
 }
 },
 “dataToIntProtectAndCipher” : [
 Hdr2,
 IE2
]
}

_1603726589.vsd
{
 “dataToIntegrityProtect” : {
 “clearTextEncapsulatedMsg” : {
 “Pseudo-Headers” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”: null
 },
 “Payload” : {
	 “IE1” : {},
 	 “IE2” : null,
	 “IE3” : {},
 	 “IE4” : {}
 }
 },
 “metaData” : {
 “Message Id” : {},
	 “authorizedIPX Id” : {},
 “N32-f Context Id” : ()
 }
 },
 “dataToIntProtectAndCipher” : [
 {
	”op”: ”replace”,
	”path”: ”/HTTP_Headers/Hdr2",
	”value”: Hdr2
 },
 {
	 ”op”: ”replace”,
	 ”path”: ”/Payload/IE2",
	 ”value”: IE2
 }
]
}

_1595444995.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of clearText, encrypted text
Decrypt encrypted Block
Verify IPX updates in modificationsBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

